Swagelok® Steam-Heated Vaporizing Pressure-Reducing Regulators
The KSV series steam-heated vaporizing regulator is designed to vaporize liquid samples and preheat gas samples.
Get Help Selecting RegulatorsSwagelok’s steam-heated vaporizing pressure-reducing regulator is designed to effectively vaporize liquid samples or warm gas samples, preventing condensation. It is engineered to adapt to changes in user inputs, ambient temperatures, and other operating conditions. Certified for use in critical and hazardous environments, KSV series regulator consistently delivers dependable performance.
Key Features of the KSV Series Regulator
- Convoluted, nonperforated diaphragm
- Metal-to-metal diaphragm seal
- Low internal volume
Specifications
Maximum Inlet Pressure | 3600 psig (248 bar) |
Pressure Control Ranges | 0 to 10 psig (0.68 bar) through 0 to 500 psig (34.4 bar) |
Flow Coefficient (Cv) | 0.06 or 0.20 |
Maximum Steam Pressure and Temperature | 650 psig (44.7 bar) and 500°F (260°) |
Maximum Operating Temperature | 392°F (200°C) |
Pressure-Reducing, Steam-Heated Vaporizing Regulators Catalogs
Find comprehensive details on our steam-heated vaporizing pressure-reducing regulator covering construction materials, accessories, pressure, and temperature ratings.
Swagelok offers pressure-reducing, back-pressure, dome-loaded, and spring-loaded pressure regulators to control pressure and minimize droop in instrumentation systems.
Need Help Selecting the Right Regulators?
Learn more about different types of regulators under varying application conditions with our regulator selection video.
Find the Right RegulatorSwagelok Regulator Resources
Managing Supply Pressure Effect (SPE) in a Regulator
Supply pressure effect, also known as dependency, is an inverse relationship between inlet and outlet pressure variables within a regulator. Learn how to manage this phenomenon in your pressure regulators with tips from Swagelok.
How Thorough Testing Ensures Reliable Regulator Performance
Have you ever wondered what testing goes into a product designed to operate in extreme conditions? Take a look behind the lab doors, following the development journey of RHPS Series industrial regulators rated for use at temperatures well below zero.
How to Flatten a Regulator Flow Curve to Reduce Droop
Droop is an issue for every pressure-reducing regulator. Learn how to minimize droop and flatten regulator flow curves with various dome loaded regulator configurations.
How to Use a Regulator to Reduce Time Delay in an Analytical Instrumentation System
Time delay is often underestimated or misunderstood in analytical systems. One way to mitigate this delay is with a pressure-controlled regulator. Learn how to manage your analytical system’s time delay with these tips.