Редукторы давления Swagelok®, куполовидные
Универсальные (серия SGRD) и высокочувствительные (серия SHRD) куполовидные редукторы давления хорошо подходят для систем, где требуется ручное или дистанционное управление устройством, и точный контроль заданного давления.
Помощь с выбором технологических регуляторовРегуляторы серий SGRD и SHRD рассчитаны на долгую работу в сложных условиях. Корпуса регуляторов изготовлены из нержавеющей стали 316L, что повышает их коррозионную стойкость и долговечность. Предусмотрены внутренние уплотнения из различных материалов, которые обеспечивает повышенную совместимость с широким спектром химических веществ и режимов давления.
Куполовидные редукторы давления обеспечивают превосходные характеристики для поддержания стабильного давления на выходе. Благодаря использованию купола вместо пружины, такие устройства эффективно минимизируют перепад давления. Их конструкция обеспечивает постоянное давление на выходе, независимо от колебаний входного давления или изменения расхода.
Характеристики серий SGRD и SHRD
- Конструкция с уравновешенным золотником
- Мембранный чувствительный механизм
- Без выпуска
- Управление пилотным регулятором
Настраиваемые характеристики
- Внешняя обратная связь к пилотному регулятору
- Пилотное устройство перепада давления (серия SGRD)
- Двухступенчатый пилотный регулятор (серия SGRD)
- Защита от несанкционированного доступа / Рукоятка пилотного устройства с заводскими настройками
- NACE MR0175/ISO 15156
Редукторы давления общего назначения, купольные регуляторы (серия SGRD)
Технические характеристики
| Размер корпуса | Максимальное давление на входе, psig (бар ман) | Максимальное давление на выходе, psig (бар ман) | Диапазон регулируемого давления psig (бар ман) | Тип чувствительного механизма psig (бар ман) | Рабочая температура, °F° (C) | Коэффициент расхода (Cv) | Минимальная масса, фунты (кг) |
|---|---|---|---|---|---|---|---|
| 12 | 6000 (413) | 6000 (413) | 5–6000 (0,3–413) | Мембранный: 5–6000 (0,3–413) | от –49 до 356° (от –45 до 180°) | 2,3 | 9,7 (4,4) |
| 16 | 4,8 | 26,5 (12,0) | |||||
| 24 | 10,7 | 27,6 (12,5) |
Высокочувствительные редукторы давления, купольные регуляторы (серия SHRD)
Технические характеристики
| Размер корпуса | Максимальное давление на входе, psig (бар ман) | Максимальное давление на выходе, psig (бар ман) | Диапазон регулируемого давления psig (бар ман) | Тип чувствительного механизма psig (бар ман) | Рабочая температура, °F° (C) | Коэффициент расхода (Cv) | Минимальная масса, фунты (кг) |
|---|---|---|---|---|---|---|---|
| 12 | 250 (17,2) | 250 (17,2) | 1–250 (0,07–17,2) | Мембранный: 1–250 (0,07–17,2) | от –49 до 356° (от –45 до 180°) | 2,3 | 9,7 (4,4) |
| 16 | 4,8 | 26,5 (12,0) | |||||
| 24 | 10,7 | 27,6 (12,5) |
Каталог технологических куполовидных редукторов давления
Получите подробные сведения о продукции, в том числе о материалах изготовления, номинальных параметрах давления и температуры, вариантах исполнения и вспомогательных принадлежностях.
감압용 모델; 역압용 모델; 스프링 작동식, 돔 작동식 및 공기 작동식; 1/4 ~ 4인치 연결구; 최대 사용 압력 10 150 psig (700 bar); 온도 –20 ~ 80 ºC (–4 ~ 176 ºF)
압력 레귤레이터에는 한 편으로 스프링(아래에 표시) 또는 가스 압력에 의해 생성되는 하중의 힘(FS)을 받는 감지 요소(피스톤 또는 다이어프램)가 있습니다. 다른 한 편에서 감지 요소는 시스템 유체의 힘(F)에 영향을 받습니다.
Нужна помощь с выбором подходящего регулятора?
Сравните показатели разных регуляторов в различных рабочих условиях с помощью нашего калькулятора для расчета параметров расхода регулятора.
Поиск подходящего регулятораРесурсы Swagelok специально для вас
Минимизация эффекта нагнетаемого давления (SPE) в регуляторе
Эффект нагнетаемого давления—это обратная зависимость между значениями давления на входе и выходе регулятора. Узнайте, как минимизировать это явление в регуляторах давления благодаря рекомендациям от компании Swagelok.
Как тщательные испытания гарантируют надежность работы регулятора
Вы когда-нибудь задавались вопросом, какие испытания проходят изделия, предназначенные для работы в экстремальных условиях? Загляните в лабораторию и узнайте историю разработки промышленных регуляторов серии RHPS для эксплуатации при сверхнизких температурах.
How to Flatten a Regulator Flow Curve to Reduce Droop
Droop is an issue for every pressure-reducing regulator. Learn how to minimize droop and flatten regulator flow curves with various dome loaded regulator configurations.
How to Use a Regulator to Reduce Time Delay in an Analytical Instrumentation System
Time delay is often underestimated or misunderstood in analytical systems. One way to mitigate this delay is with a pressure-controlled regulator. Learn how to manage your analytical system’s time delay with these tips.
