Swagelok® Gas Cylinder Changeover Regulators
KCM series regulators auto-switch gas sources, ensuring continuous flow and reducing downtime.
Get Help Selecting RegulatorsSwagelok's KCM series gas cylinder changeover regulators automatically switch between two gas sources to maintain continuous gas flow in critical industrial applications, reducing downtime and labor costs. Allowing reliable gas distribution with reduced oversight, KCM series changeover regulators are designed to require minimal maintenance. Convoluted, non-perforated diaphragms within the KCM series regulators provide durability and enhanced pressure response.
Specifications
Maximum Inlet Pressure | 4351 psig (300 bar) with PEEK seat 3600 psig (248 bar) Cylinder connections and hose accessories may limit inlet pressure ratings. |
Pressure Control Ranges | 0 to 10 psig (0.68 bar) through 0 to 500 psig (34.4 bar) |
Nominal Changeover Pressures | 100, 250 and 500 psig (6.8, 17.2, and 34.4 bar) |
Flow Coefficient (Cv) | 0.06 |
Maximum Operating Temperature | 176°F (80°C) with PCTFE seat 392°F (200°C) with PEEK seat 212°F (100°C) with PEEK seat and maximum inlet pressure greater than 3600 psig (248 bar) |
Gas Cylinder Changeover Regulators Catalogs
Find comprehensive details on our gas cylinder changeover regulators covering construction materials, accessories, pressure, and temperature ratings.
Swagelok offers pressure-reducing, back-pressure, dome-loaded, and spring-loaded pressure regulators to control pressure and minimize droop in instrumentation systems.
Need Help Selecting the Right Regulators?
Learn more about different types of regulators under varying application conditions with our regulator selection video.
Find the Right RegulatorSwagelok Regulator Resources
Managing Supply Pressure Effect (SPE) in a Regulator
Supply pressure effect, also known as dependency, is an inverse relationship between inlet and outlet pressure variables within a regulator. Learn how to manage this phenomenon in your pressure regulators with tips from Swagelok.
How Thorough Testing Ensures Reliable Regulator Performance
Have you ever wondered what testing goes into a product designed to operate in extreme conditions? Take a look behind the lab doors, following the development journey of RHPS Series industrial regulators rated for use at temperatures well below zero.
How to Flatten a Regulator Flow Curve to Reduce Droop
Droop is an issue for every pressure-reducing regulator. Learn how to minimize droop and flatten regulator flow curves with various dome loaded regulator configurations.
How to Use a Regulator to Reduce Time Delay in an Analytical Instrumentation System
Time delay is often underestimated or misunderstood in analytical systems. One way to mitigate this delay is with a pressure-controlled regulator. Learn how to manage your analytical system’s time delay with these tips.